SMOOTH MANIFOLDS FALL 2022-HOMEWORK 9

Problem 1. Show that if M_{i} are compact, connected, oriented manifolds of the same dimension for $i=1,2,3$, and $f: M_{1} \rightarrow M_{2}$ and $g: M_{2} \rightarrow M_{3}$ are C^{∞} functions, then $\operatorname{deg}(g \circ f)=\operatorname{deg}(g) \operatorname{deg}(f)$.
Problem 2. Show that if M and N are compact, connected and oriented manifolds of the same dimension, and $F: M \rightarrow N$ has $\operatorname{deg}(F)=0$, then F has a critical point.

Problem 3. Let A be an $n \times n$ square matrix with integer entries, $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ and $F_{A}: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ be defined by

$$
F_{A}([x])=[A x]
$$

where the notation $[x]$ denotes the equivalence class $x+\mathbb{Z}^{n}$.
(1) Show that F_{A} is well-defined.
(2) Compute $\operatorname{deg}\left(F_{A}\right)$ by computing the signed number of preimages of a regular value of F_{A}.
(3) Compute $\operatorname{deg}\left(F_{A}\right)$ by computing $\int F_{A}^{*} \omega$, where ω is the standard n-form $d x_{1} \wedge \cdots \wedge d x_{n}$.

Non-graded.
Problem 4. Let Γ be a countable group acting properly discontinuously on an oriented manifold M by diffeomorphisms. Show that the quotient manifold M / Γ is orientable if and only if every $\gamma \in \Gamma$ is orientation-preserving.

Problem 5. Let ω be a top form on a C^{∞} manifold M and $\varphi_{t}: M \rightarrow M$ be a flow on M generated by a vector field X. Show that $\varphi_{t}^{*} \omega=\omega$ for all $t \in \mathbb{R}$ if and only if $\iota_{X} \omega$ is closed. Use this to find a condition for a flow generated by a vector field $X=\sum f_{i} \frac{\partial}{\partial x_{i}}$ to preserve the standard top form $\omega=d x_{1} \wedge \cdots \wedge d x_{n}$ on \mathbb{R}^{n}.

Problem 6. Let $f: M \rightarrow M$ be an orientation-preserving diffeomorphism of an oriented compact manifold M. Fix a non-vanishing top form ω_{0}. Show that there is a unique C^{∞} function $\lambda: M \rightarrow \mathbb{R}$ such that $f^{*} \omega=e^{\lambda} \omega$, and f preserves some non-vanishing top form if and only if there exists a C^{∞} function $h: M \rightarrow \mathbb{R}$ such that

$$
\lambda=h \circ f-h .
$$

Problem 7. If G is a connected, compact Lie group, consider the squaring map $s(g)=g^{2}$.
(a) Show that if $G=\mathbb{T}^{n}$, then $\operatorname{deg}(s)=2^{s}$. Check this formula both by computing the degree at a regular value, as well as using a volume form.
(b) Show that if G is the set of unit quaternions, then $\operatorname{deg}(s)=2$ [Hint: Show that if $g \neq \pm 1$, then there is a unique 1-parameter subgroup passing through g and that any square root must belong to it]

Remark 1. If you know about the structure of compact Lie groups, you may try the following more difficult exercise: $\operatorname{deg}(s)=2^{r}$, where r is the maximal dimension of a connected abelian subgroup of G.

